Application of the π-accepting ability parameter of N-heterocyclic carbene ligands in iridium complexes for signal amplification by reversible exchange (SABRE).

نویسندگان

  • Bram J A van Weerdenburg
  • Nan Eshuis
  • Marco Tessari
  • Floris P J T Rutjes
  • Martin C Feiters
چکیده

The new π-accepting ability parameter (PAAP) appears to be the best tool to analyse the electronic properties of NHC ligands in [Ir(H)2(NHC)(Py)3](+) complexes for SABRE. Together with the buried volume, the efficiency of hyperpolarisation transfer in SABRE, depending on the exchange rate of pyridine, can be described.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utilisation of water soluble iridium catalysts for signal amplification by reversible exchange.

The catalytic hyperpolarisation of pyridine, 3-hydroxypyridine and oxazole by the Signal Amplification By Reversible Exchange (SABRE) process is achieved by a series of water soluble iridium phosphine and N-heterocyclic carbene dihydride complexes. While the efficiency of the SABRE process in methanol-d4 solution or ethanol-d6 solution is high, with over 400-fold (1)H polarisation of pyridine b...

متن کامل

Aqueous NMR Signal Enhancement by Reversible Exchange in a Single Step Using Water-Soluble Catalysts

Two synthetic strategies are investigated for the preparation of water-soluble iridium-based catalysts for NMR signal amplification by reversible exchange (SABRE). In one approach, PEGylation of a variant N-heterocyclic carbene provided a novel catalyst with excellent water solubility. However, while SABRE-active in ethanol solutions, the catalyst lost activity in >50% water. In a second approa...

متن کامل

Iridium(III) Hydrido N-Heterocyclic Carbene–Phosphine Complexes as Catalysts in Magnetization Transfer Reactions

The hyperpolarization (HP) method signal amplification by reversible exchange (SABRE) uses para-hydrogen to sensitize substrate detection by NMR. The catalyst systems [Ir(H)2(IMes)(MeCN)2(R)]BF4 and [Ir(H)2(IMes)(py)2(R)]BF4 [py = pyridine; R = PCy3 or PPh3; IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene], which contain both an electron-donating N-heterocyclic carbene and a phosphine, ...

متن کامل

Harnessing polarisation transfer to indazole and imidazole through signal amplification by reversible exchange to improve their NMR detectability

The signal amplification by reversible exchange (SABRE) approach has been used to hyperpolarise the substrates indazole and imidazole in the presence of the co-ligand acetonitrile through the action of the precataysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)]. 2 H-labelled forms of these catalysts were also examined. Our comparison of the two precatalysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)]...

متن کامل

Highly active iridium(I) complexes for catalytic hydrogen isotope exchange.

Practically convenient methods have been developed for the preparation of new iridium complexes, possessing bulky N-heterocyclic carbene and phosphine ligands; these routinely handled complexes are highly active catalysts within directed hydrogen isotope exchange processes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Dalton transactions

دوره 44 35  شماره 

صفحات  -

تاریخ انتشار 2015